Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Chem ; 18(1): 98, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730412

RESUMEN

The pursuit of advanced multifunctional compounds has gained significant momentum in recent scientific endeavours. This study is dedicated to elucidating the synthesis, rigorous characterization, and multifaceted applications-encompassing anti-corrosion, antimicrobial, and antioxidant properties-of Diethyl 4-(5-bromo-1H-indol-3-yl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate. The 1,4-dihydropyridine derivative was meticulously synthesized through a strategic reaction of ethyl acetoacetate, ammonium acetate, and 5-bromoindole-3-carboxaldehydein the ethanol medium at 60  C. Subsequent spectral validations were conducted using sophisticated techniques, namely FTIR, NMR, and Mass spectrometry, resulting in data that perfectly resonated with the hypothesized chemical structure of the compound. Its anti-corrosive potential was assessed on mild steel subjected to an aggressive acidic environment, employing comprehensive methodologies like gravimetric analysis, Tafel polarization, and EIS. Concurrently, its antimicrobial prowess was ascertained against a spectrum of bacterial and fungal pathogens viz., Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Pseudomonas, Candida albicansandAspergillusniger, leveraging the disc diffusion method and using Gentamicin as a reference standard.The empirical results illustrated a substantial decrement in corrosion rates with ascending concentrations of the organic compound, achieving an apex of anti-corrosive efficacy at 81.89% for a concentration of 2 × 103 M. Furthermore, the compound outperformed Gentamicin in antimicrobial screenings, manifesting superior efficacy against all tested pathogens. The antioxidant potential, quantified using the DPPH free radical scavenging assay against ascorbic acid as a benchmark, was found to have an IC50 value of 113.964 ± 0.076 µg/ml.This comprehensive investigation accentuates the paramount potential of the synthesized dihydropyridine derivative in diverse domains-from industrial applications as a corrosion inhibitor to therapeutic avenues given its pronounced antimicrobial and antioxidant capabilities. The compelling results obtained pave the way for expansive research and development initiatives cantered around this multifaceted compound.

2.
J Cell Mol Med ; 28(8): e18302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38652115

RESUMEN

The evolving landscape of personalized medicine necessitates a shift from traditional therapeutic interventions towards precision-driven approaches. Embracing this paradigm, our research probes the therapeutic efficacy of the aqueous crude extract (ACE) of Calocybe indica in cervical cancer treatment, merging botanical insights with advanced molecular research. We observed that ACE exerts significant influences on nuclear morphology and cell cycle modulation, further inducing early apoptosis and showcasing prebiotic attributes. Characterization of ACE have identified several phytochemicals including significant presence of octadeconoic acid. Simultaneously, utilizing advanced Molecular Dynamics (MD) simulations, we deciphered the intricate molecular interactions between Vascular Endothelial Growth Factor (VEGF) and Octadecanoic acid to establish C.indica's role as an anticancer agent. Our study delineates Octadecanoic acid's potential as a robust binding partner for VEGF, with comprehensive analyses from RMSD and RMSF profiles highlighting the stability and adaptability of the protein-ligand interactions. Further in-depth thermodynamic explorations via MM-GBSA calculations reveal the binding landscape of the VEGF-Octadecanoic acid complex. Emerging therapeutic innovations, encompassing proteolysis-targeting chimeras (PROTACs) and avant-garde nanocarriers, are discussed in the context of their synergy with compounds like Calocybe indica P&C. This convergence underscores the profound therapeutic potential awaiting clinical exploration. This study offers a holistic perspective on the promising therapeutic avenues facilitated by C. indica against cervical cancer, intricately woven with advanced molecular interactions and the prospective integration of precision therapeutics in modern oncology.


Asunto(s)
Simulación de Dinámica Molecular , Extractos Vegetales , Neoplasias del Cuello Uterino , Factor A de Crecimiento Endotelial Vascular , Neoplasias del Cuello Uterino/tratamiento farmacológico , Neoplasias del Cuello Uterino/metabolismo , Neoplasias del Cuello Uterino/patología , Humanos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Femenino , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Medicina de Precisión/métodos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Unión Proteica , Simulación del Acoplamiento Molecular
3.
J Med Virol ; 96(4): e29596, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38590017

RESUMEN

Exosomes play a crucial role in intercellular communication and have emerged as significant vehicles for transporting disease-specific biomarkers. This feature provides profound insights into the progression of diseases and the responses of patients to treatments. For example, in leukemia, exosomes convey critical information through the carriage of specific proteins and nucleic acids. In the case of human papillomavirus (HPV)-mediated cervical cancer, exosomes are particularly useful for noninvasive detection as they transport high-risk HPV DNA and specific biomolecules, which can be indicators of the disease. Despite their vast potential, there are several challenges associated with the use of exosomes in medical diagnostics. These include their inherent heterogeneity, the need for enhanced sensitivity in detection methods, the establishment of standardization protocols, and the requirement for cost-effective scalability in their application. Addressing these challenges is crucial for the effective implementation of exosome-based diagnostics. Future research and development are geared towards overcoming these obstacles. Efforts are concentrated on refining the processes of biomarker discovery, establishing comprehensive regulatory frameworks, developing convenient point-of-care devices, exploring methods for multimodal detection, and conducting extensive clinical trials. The ultimate goal of these efforts is to inaugurate a new era of precision diagnostics within healthcare. This would significantly improve patient outcomes and reduce the burden of diseases such as leukemia and HPV-mediated cervical cancer. The integration of exosomes with cutting-edge technology holds the promise of significantly reinforcing the foundations of healthcare, leading to enhanced diagnostic accuracy, better disease monitoring, and more personalized therapeutic approaches.


Asunto(s)
Exosomas , Leucemia , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/tratamiento farmacológico , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/diagnóstico
4.
ACS Omega ; 9(7): 7277-7295, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38405458

RESUMEN

In the realm of cancer immunotherapy, a profound evolution has ushered in sophisticated strategies that encompass both traditional cancer vaccines and emerging viral vaccines. This comprehensive Review offers an in-depth exploration of the methodologies, clinical applications, success stories, and future prospects of these approaches. Traditional cancer vaccines have undergone significant advancements utilizing diverse modalities such as proteins, peptides, and dendritic cells. More recent innovations have focused on the physiological mechanisms enabling the human body to recognize and combat precancerous and malignant cells, introducing specific markers like peptide-based anticancer vaccines targeting tumor-associated antigens. Moreover, cancer viral vaccines, leveraging engineered viruses to stimulate immune responses against specific antigens, exhibit substantial promise in inducing robust and enduring immunity. Integration with complementary therapeutic methods, including monoclonal antibodies, adjuvants, and radiation therapy, has not only improved survival rates but also deepened our understanding of viral virulence. Recent strides in vaccine design, encompassing oncolytic viruses, virus-like particles, and viral vectors, mark the frontier of innovation. While these advances hold immense potential, critical challenges must be addressed, such as strategies for immune evasion, potential off-target effects, and the optimization of viral genomes. In the landscape of immunotherapy, noteworthy innovations take the spotlight from the use of immunomodulatory agents for the enhancement of innate and adaptive immune collaboration. The emergence of proteolysis-targeting chimeras (PROTACs) as precision tools for cancer therapy is particularly exciting. With a focus on various cancers, from melanoma to formidable solid tumors, this Review critically assesses types of cancer vaccines, mechanisms, barriers in vaccine therapy, vaccine efficacy, safety profiles, and immune-related adverse events, providing a nuanced perspective on the underlying mechanisms involving cytotoxic T cells, natural killer cells, and dendritic cells. The Review also underscores the transformative potential of cutting-edge technologies such as clinical studies, molecular sequencing, and artificial intelligence in advancing the field of cancer vaccines. These tools not only expedite progress but also emphasize the multidimensional and rapidly evolving nature of this research, affirming its profound significance in the broader context of cancer therapy.

6.
Biomed Pharmacother ; 170: 116083, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38163395

RESUMEN

As we navigate the modern era, the intersection of time-honoured natural remedies and contemporary scientific approaches forms a burgeoning frontier in global healthcare. For generations, natural products have been foundational to health solutions, serving as the primary healthcare choice for 80% to 85% of the world's population. These herbal-based, nature-derived substances, significant across diverse geographies, necessitate a renewed emphasis on enhancing their quality, efficacy, and safety. In the current century, the advent of biogenic phytonanoparticles has emerged as an innovative therapeutic conduit, perfectly aligning with principles of environmental safety and scientific ingenuity. Utilizing green chemistry techniques, a spectrum of metallic nanoparticles including elements such as copper, silver, iron, zinc, and titanium oxide can be produced with attributes of non-toxicity, sustainability, and economic efficiency. Sophisticated herb-mediated processes yield an array of plant-originated nanomaterials, each demonstrating unique physical, chemical, and biological characteristics. These attributes herald new therapeutic potentials, encompassing antioxidants, anti-aging applications, and more. Modern technology further accelerates the synthesis of natural products within laboratory settings, providing an efficient alternative to conventional isolation methods. The collaboration between traditional wisdom and advanced methodologies now signals a new epoch in healthcare. Here, the augmentation of traditional medicine is realized through rigorous scientific examination. By intertwining ethical considerations, cutting-edge technology, and natural philosophy, the realms of biogenic phytonanoparticles and traditional medicine forge promising pathways for research, development, and healing. The narrative of this seamless integration marks an exciting evolution in healthcare, where the fusion of sustainability and innovation crafts a future filled with endless possibilities for human well-being. The research in the development of metallic nanoparticles is crucial for unlocking their potential in revolutionizing fields such as medicine, catalysis, and electronics, promising groundbreaking applications with enhanced efficiency and tailored functionalities in future technologies. This exploration is essential for harnessing the unique properties of metallic nanoparticles to address pressing challenges and advance innovations across diverse scientific and industrial domains.


Asunto(s)
Nanopartículas del Metal , Extractos Vegetales , Humanos , Extractos Vegetales/química , Tecnología Química Verde , Plantas , Medicina Tradicional , Nanopartículas del Metal/química , Atención a la Salud
7.
ACS Omega ; 8(40): 36614-36627, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37841156

RESUMEN

Ovarian cancer (OC) is a common gynecological cancer worldwide. Unfortunately, the lack of early detection methods translates into a substantial cohort of women grappling with the pressing health crisis. The discovery of extracellular vesicles (EVs) (their major subpopulation exosomes, microvesicles, and apoptotic bodies) has provided new insights into the understanding of cancer. Exosomes, a subpopulation of EVs, play a crucial role in cellular communication and reflect the cellular status under both healthy and pathological conditions. Tumor-derived exosomes (TEXs) dynamically influence ovarian cancer progression by regulating uncontrolled cell growth, immune suppression, angiogenesis, metastasis, and the development of drug and therapeutic resistance. In the field of OC diagnostics, TEXs offer potential biomarkers in various body fluids. On the other hand, exosomes have also shown promising abilities to cure ovarian cancer. In this review, we address the interlink between exosomes and ovarian cancer and explore their theragnostic signature. Finally, we highlight future directions of exosome-based ovarian cancer research.

8.
J Med Virol ; 95(10): e29135, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792364

RESUMEN

Personalized cancer immunotherapies, combined with nanotechnology (nano-vaccines), are revolutionizing cancer treatment strategies, explicitly targeting Human papilloma virus (HPV)-related cancers. Despite the availability of preventive vaccines, HPV-related cancers remain a global concern. Personalized cancer nano-vaccines, tailored to an individual's tumor genetic mutations, offer a unique and promising solution. Nanotechnology plays a critical role in these vaccines by efficiently delivering tumor-specific antigens, enhancing immune responses, and paving the way for precise and targeted therapies. Recent advancements in preclinical models have demonstrated the potential of polymeric nanoparticles and high-density lipoprotein-mimicking nano-discs in augmenting the efficacy of personalized cancer vaccines. However, challenges related to optimizing the nano-carrier system and ensuring safety in human trials persist. Excitingly, the integration of nanotechnology with Proteolysis-Targeting Chimeras (PROTACs) provides an additional avenue to enhance the effectiveness of personalized cancer treatment. PROTACs selectively degrade disease-causing proteins, amplifying the impact of nanotechnology-based therapies. Overcoming these challenges and leveraging the synergistic potential of nanotechnology, PROTACs, and Proteolysis-Targeting Antibodies hold great promise in pursuing novel and effective therapeutic solutions for individuals affected by HPV-related cancers.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Infecciones por Papillomavirus , Humanos , Quimera Dirigida a la Proteólisis , Virus del Papiloma Humano , Infecciones por Papillomavirus/complicaciones , Infecciones por Papillomavirus/tratamiento farmacológico , Proteolisis , Neoplasias/terapia
9.
Heliyon ; 9(10): e20670, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876433

RESUMEN

Background: Helicobacter pylori (H. pylori) is a persistent bacterial inhabitant in the stomachs of approximately half the global populace. This bacterium is directly linked to chronic gastritis, leading to a heightened risk of duodenal and gastric ulcer diseases, and is the predominant risk factor for gastric cancer - the second most common cause of cancer-related deaths globally. The increasing prevalence of antibiotic resistance necessitates the exploration of innovative treatment alternatives to mitigate the H. pylori menace. Methods: Initiating our study, we curated a list of thirty phytochemicals based on previous literature and subjected them to molecular docking studies. Subsequently, eight phytocompounds-Glabridin, Isoliquiritin, Sanguinarine, Liquiritin, Glycyrrhetic acid, Beta-carotin, Diosgenin, and Sarsasapogenin-were meticulously chosen based on superior binding scores. These were further subjected to an extensive computational analysis encompassing ADMET profiling, drug-likeness evaluation, principal component analysis (PCA), and molecular dynamic simulations (MDs) in comparison with the conventional drug, Mitomycin. Results: The natural compounds investigated demonstrated superior docking affinities to H. pylori targets compared to the standard Mitomycin. Notably, the phytocompounds Diosgenin and Sarsasapogenin stood out due to their exceptional binding affinities and pharmacokinetic properties, including favorable ADMET profiles. Conclusion: Our comprehensive and technologically-advanced approach showcases the potential of identified phytocompounds as pioneering therapeutic agents against H. pylori-induced gastric malignancies. In light of our promising in silico results, we recommend these natural compounds as potential candidates for advancing H. pylori-targeted drug development. Given their potential, we strongly advocate for subsequent in vitro and in vivo studies to validate their therapeutic efficacy against this formidable gastrointestinal bacterium.

10.
Drug Dev Res ; 84(6): 1031-1036, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37391892

RESUMEN

Exosome-based targeted delivery of Proteolysis-Targeting Chimeras (PROTACs) is an innovative approach that provides a promising solution for addressing the complex issues of viral diseases. This strategy significantly mitigates the off-target effects associated with traditional therapeutics by facilitating targeted delivery of PROTACs, which in turn enhances the overall therapeutic outcomes. Challenges like poor pharmacokinetics and unintended side effects, commonly observed with conventional PROTACs usage, are effectively managed with this approach. Emerging evidence affirms the potential of this delivery mechanism in curbing viral replication. However, it is crucial to undertake more comprehensive investigations for optimizing exosome-based delivery systems and conducting stringent safety and efficacy assessments within preclinical and clinical settings. The advancements in this field could potentially redefine the therapeutic landscape for viral diseases, opening new vistas for their management and treatment.


Asunto(s)
Exosomas , Virosis , Humanos , Proteolisis , Virosis/tratamiento farmacológico
11.
Front Microbiol ; 14: 1189786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37455711

RESUMEN

Mosquitoes are the primary vector for West Nile virus, a flavivirus. The virus's ability to infiltrate and establish itself in increasing numbers of nations has made it a persistent threat to public health worldwide. Despite the widespread occurrence of this potentially fatal disease, no effective treatment options are currently on the market. As a result, there is an immediate need for the research and development of novel pharmaceuticals. To begin, molecular docking was performed on two possible West Nile virus target proteins using a panel of twelve natural chemicals, including Apigenin, Resveratrol, Hesperetin, Fungisterol, Lucidone, Ganoderic acid, Curcumin, Kaempferol, Cholic acid, Chlorogenic acid, Pinocembrin, and Sanguinarine. West Nile virus methyltransferase (PDB ID: 2OY0) binding affinities varied from -7.4 to -8.3 kcal/mol, whereas West Nile virus envelope glycoprotein affinities ranged from -6.2 to -8.1 kcal/mol (PDB ID: 2I69). Second, substances with larger molecular weights are less likely to be unhappy with the Lipinski rule. Hence, additional research was carried out without regard to molecular weight. In addition, compounds 01, 02, 03, 05, 06, 07, 08, 09, 10 and 11 are more soluble in water than compound 04 is. Besides, based on maximum binding affinity, best three compounds (Apigenin, Curcumin, and Ganoderic Acid) has been carried out molecular dynamic simulation (MDs) at 100 ns to determine their stability. The MDs data is also reported that these mentioned molecules are highly stable. Finally, advanced principal component analysis (PCA), dynamics cross-correlation matrices (DCCM) analysis, binding free energy and dynamic cross correlation matrix (DCCM) theoretical study is also included to established mentioned phytochemical as a potential drug candidate. Research has indicated that the aforementioned natural substances may be an effective tool in the battle against the dangerous West Nile virus. This study aims to locate a bioactive natural component that might be used as a pharmaceutical.

12.
Front Cell Infect Microbiol ; 13: 1188763, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37293201

RESUMEN

The increasing incidence of Monkeypox virus (Mpox) and Marburg virus (MARV) infections worldwide presents a significant challenge to global health, as limited treatment options are currently available. This study investigates the potential of several O-rhamnosides and Kaempferol-O-rhamnosides as Mpox and MARV inhibitors using molecular modeling methods, including ADMET, molecular docking, and molecular dynamics/MD simulation. The effectiveness of these compounds against the viruses was assessed using the Prediction of Activity Spectra for Substances (PASS) prediction. The study's primary focus is molecular docking prediction, which demonstrated that ligands (L07, L08, and L09) bind to Mpox (PDB ID: 4QWO) and MARV (PDB ID: 4OR8) with binding affinities ranging from -8.00 kcal/mol to -9.5 kcal/mol. HOMO-LUMO based quantum calculations were employed to determine the HOMO-LUMO gap of frontier molecular orbitals (FMOs) and to estimate chemical potential, electronegativity, hardness, and softness. Drug similarity and ADMET prediction assessments of pharmacokinetic properties revealed that the compounds were likely non-carcinogenic, non-hepatotoxic, and rapidly soluble. Molecular dynamic (MD) modeling was used to identify the most favorable docked complexes involving bioactive chemicals. MD simulations indicate that varying types of kaempferol-O-rhamnoside are necessary for successful docking validation and maintaining the stability of the docked complex. These findings could facilitate the discovery of novel therapeutic agents for treating illnesses caused by the Mpox and MARV viruses.


Asunto(s)
Marburgvirus , Mpox , Virosis , Humanos , Quempferoles/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
15.
Biotechnol Genet Eng Rev ; : 1-35, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747352

RESUMEN

Biochar is the thermal degradation product of biomass generated in an oxygen-limited environment under different pyrolysis conditions. Biochar characteristics are functions of the feedstock material and pyrolysis temperature. Depending on pyrolysis conditions biochar concentrates varying quantities of recalcitrant and labile carbon along with nutrients which in turn affect soil physiochemical properties and microbial processes. Biochar in soil balances carbon content encourages nitrogen fixation and solubilize phosphorus along with enhancing soil enzyme activity. It serves as a microhabitat for microorganisms present in soil thus influences the diversity, composition, and distribution of soil microbial communities by affecting their intra- and interspecific communication. This review provides an overview of the current knowledge about biochar characteristics, its interactions with soil, and associated biota and its role in soil remediation. In addition, this paper also discussed the factors affecting the capacity of biochar to adsorb organic pollutants following different mechanisms. Being an effective adsorbent due its high specific surface area, large porosity, and numerous surface functional groups biochar has been explored extensively in field of environment to remediate contaminated soils.

16.
Curr Med Chem ; 30(3): 356-370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35927901

RESUMEN

Even though the promising therapies against cancer are rapidly improved, the oncology patients population has seen exponential growth, placing cancer in 5th place among the ten deadliest diseases. Efficient drug delivery systems must overcome multiple barriers and maximize drug delivery to the target tumors, simultaneously limiting side effects. Since the first observation of the quantum tunneling phenomenon, many multidisciplinary studies have offered quantum-inspired solutions to optimized tumor mapping and efficient nanodrug design. The property of a wave function to propagate through a potential barrier offer the capability of obtaining 3D surface profiles using imaging of individual atoms on the surface of a material. The application of quantum tunneling on a scanning tunneling microscope offers an exact surface roughness mapping of tumors and pharmaceutical particles. Critical elements to cancer nanotherapeutics apply the fractal theory and calculate the fractal dimension for efficient tumor surface imaging at the atomic level. This review study presents the latest biological approaches to cancer management based on fractal geometry.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Fractales , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Preparaciones Farmacéuticas , Nanopartículas/uso terapéutico
17.
Metab Brain Dis ; 38(1): 61-68, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36149588

RESUMEN

Glioblastoma (GB) are aggressive tumors that obstruct normal brain function. While the skull cannot expand in response to cancer growth, the growing pressure in the brain is generally the first sign. It can produce more frequent headaches, unexplained nausea or vomiting, blurred peripheral vision, double vision, a loss of feeling or movement in an arm or leg, and difficulty speaking and concentrating; all depend on the tumor's location. GB can also cause vascular thrombi, damaging endothelial cells and leading to red blood cell leakage. Latest studies have revealed the role of single nucleotide polymorphisms (SNPs) in developing and spreading cancers such as GB and breast cancer. Many discovered SNPs are associated with GB, particularly in great abundance in the promoter region, creating polygenetic vulnerability to glioma. This study aims to compile a list of some of the most frequent and significant SNPs implicated with GB formation and proliferation.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patología , Células Endoteliales/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Encéfalo/patología
18.
Front Mol Neurosci ; 15: 1036552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561895

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder in the world, affecting an estimated 50 million individuals. The nerve cells become impaired and die due to the formation of amyloid-beta (Aß) plaques and neurofibrillary tangles (NFTs). Dementia is one of the most common symptoms seen in people with AD. Genes, lifestyle, mitochondrial dysfunction, oxidative stress, obesity, infections, and head injuries are some of the factors that can contribute to the development and progression of AD. There are just a few FDA-approved treatments without side effects in the market, and their efficacy is restricted due to their narrow target in the etiology of AD. Therefore, our aim is to identify a safe and potent treatment for Alzheimer's disease. We chose the ursolic acid (UA) and its similar compounds as a compounds' library. And the ChEMBL database was adopted to obtain the active and inactive chemicals against Keap1. The best Quantitative structure-activity relationship (QSAR) model was created by evaluating standard machine learning techniques, and the best model has the lowest RMSE and greatest R2 (Random Forest Regressor). We chose pIC50 of 6.5 as threshold, where the top five potent medicines (DB06841, DB04310, DB11784, DB12730, and DB12677) with the highest predicted pIC50 (7.091184, 6.900866, 6.800155, 6.768965, and 6.756439) based on QSAR analysis. Furthermore, the top five medicines utilize as ligand molecules were docked in Keap1's binding region. The structural stability of the nominated medications was then evaluated using molecular dynamics simulations, RMSD, RMSF, Rg, and hydrogen bonding. All models are stable at 20 ns during simulation, with no major fluctuations observed. Finally, the top five medications are shown as prospective inhibitors of Keap1 and are the most promising to battle AD.

20.
PLoS One ; 17(9): e0271401, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36099243

RESUMEN

The brown dog tick (Rhipicephalus sanguineus) is the most prevalent tick in the world and a well-recognized vector of many pathogens affecting dogs and occasionally humans. Pathogens exploit tick salivary molecules for their survival and multiplication in the vector and transmission to and establishment in the hosts. Tick saliva contains various non-proteinaceous substances and secreted proteins that are differentially produced during feeding and comprise of inhibitors of blood congealing and platelet aggregation, vasodilatory and immunomodulatory substances, and compounds preventing itch and pain. One of these proteins is Evasin-1, which has a high binding affinity to certain types of chemokines. The binding of Evasin-1 to chemokines prevents the detection and immune response of the host to R. sanguineus, which may result in the successful transmission of pathogens. In this study, we screened potential Evasin-1 inhibitor based on the pharmacophore model derived from the binding site residues. Hit ligands were further screened via molecular docking and virtual ADMET prediction, which resulted in ZINC8856727 as the top ligand (binding affinity: -9.1 kcal/mol). Molecular dynamics simulation studies, coupled with MM-GBSA calculations and principal component analysis revealed that ZINC8856727 plays a vital role in the stability of Evasin-1. We recommend continuing the study by developing a formulation that serves as a potential medicine aid immune response during R. sanguineus infestation.


Asunto(s)
Receptores de Quimiocina/antagonistas & inhibidores , Rhipicephalus sanguineus , Animales , Quimiocinas , Biología Computacional , Perros , Humanos , Inmunidad , Simulación del Acoplamiento Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA